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APPLYING FORMAL METHODS TO THE ANALYSIS OF A
KEY MANAGEMENT PROTOCOL

1. INTRODUCTION

It is difficult to be certain whether or not a cryptographic protocol satisfies its requirements.
Protocols have been designed with subtle security flaws, independent of the strengths or weaknesses
of the cryptoalgorithm used, that were not discovered until some time after they had been published.
Examples include:

" the Needham-Schroeder key-distribution protocol [1] which was found to be vulnerable to
various kinds of replay attacks 12,3].

" an early version of the IBM key management system which could be used by a penetrator to
produce session keys in the clear [41, and

" the software protection scheme developed in Ref. 5, in which a penetrator could combine pre-
viously generated messages in such a way that the system could be induced to grant unauthor-
ized access to software 161.

Other similar examples are discussed in Ref. 7. As we design more systems that depend on
such protocols for more varied and complex security needs, it is likely that other flaws will arise. If
systematic means of assuring correctness are not used, these flaws may not be discovered until signifi-
cant damage has been done.

One approach to the problem of assuring correctness that has been suggested, for example by
Kemmerer in Ref. 8, is to use machine-aided formal verification techniques. The protocol and its
desirable security properties are modeled in a formal specification language, and a machine verifica-
tion system is used in an attempt to prove that these properties hold. If the attempt succeeds, one
gains greater assurance that the protocol satisfies its requirements. If it fails, the examination of the
reasons for the failure may point out security flaws in the protocol.

Similar techniques have been applied in the design of communication protocols and of secure
computing systems. In conclusion, it seems a likely conclusion that these techniques will be useful in
the analysis of key management protocols, which have some of the properties of both. Yet, so far
they have found little application. Part of the reason for this may be that existing machine verifica-
tion systems do not emphasize the theorem-proving techniques that would be most useful in the
analysis of such protocols. In this report we attempt to fill this gap by showing how a formal model
and a software tool implementing specialized theorem-proving techniques, originally described by the
author of this report in Ref. 9, were successfully applied to the analysis of the selective broadcast pro-
tocol designed by G. J. Simmons [61. The fact that the application of these techniques uncovered two
security flaws in this protocol shows that they promise to be useful.

Manuript approved February 13, 1990.



C. A. MEADOWS

In Section 2 of this report we describe our formal model, which is an adaptation of Dolev and
Yao's term-rewriting system model of public-key protocols. We also describe the proof techniques
we use and a Prolog program that assists us in applying them. In Section 3 we describe the selective
broadcast protocol and the results of our analysis. In Section 4 we give the formal specification of
the selective broadcast protocol. In Section 5 we describe the analysis of the specification. In
Section 6 we compare our approach with other work on the specification and verification of crypto-
graphic protocols. In Section 7 we discuss the implications of our results and the ways in which our
system could be improved.

2. DESCRIPTION OF THE MODEL AND PROOF TECHNIQUES USED

The model that we use is an adaptation of the public-key model developed by Dolev and Yao in
Ref. 10. We consider a protocol as a set of rules for passing messages among the participants. The
protocol participant who receives a message, will, if he accepts it as genuine, generate a new message
by performing certain operations on it or on other messages received earlier. Thus a cryptographic
protocol may be thought of, in part, as a set of rules for generating words in a formal language. In
symbolic terms we can think of these operations as being applied in two steps: first, operations are
applied to a word or set of words, then algebraic prope.ties of the operations are used (such as the
fact that encryption cancels out decryption with the same key and vice versa) to produce the actual
words generated. Since in many cases the algebraic properties of the operations involved can be
interpreted as reduction rules (that is, a set of rules for transforming words into words that are
"simpler" according to some well-defined measure), the protocol may be thought of in part as a set
of rules for generating words in a term-rewriting language. A penetrator who tries to break the pro-
tocol by intercepting messages, supplying false messages to the participants, and performing opera-
tions on messages to find out a secret word, may be thought of as attempting to determine whether a
particular word belongs to a given term-rewriting language.

In our model protocol rules are expressed as statements of the form

IF I C W AND A AND Cond(I,A) THEN W := W U 0 AND A'

where W denotes the set of words known by the penetrator, I denotes the words making up a message
sent to a participant in the protocol, 0 denotes the words making up a message sent by a participant
in the protocol, A and A' are clauses consisting of conjunctions of clauses of the form S = T, where
S is a state variable name, and Cond(l,A) is a set of further conditions on I and A. Rules may be
either deterministic or nondeterministic; that is, a rule may either always apply or only apply under
circumstances that have not yet been specified. Rules of this form may be used to describe events as
various as:

(a) a participant in the protocol responding to a message from the penetrator,

(b) a change in the internal state values of a participant,

(c) a participant initiating an instance of a protocol, or

(d) the penetrator using the facilities available to him to generate a message.

For example, if the penetrator is able to encrypt data, we can represent this by a rule

IF IX,Yj C W THEN W := W U Je(X,Y)j
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where e(XY) denotes the result of encrypting message Y with key X. On the other hand, if a parti-
cipant in a protocol will encrypt all messages sent to it with the current session key and send them
out; this may be described by the rule

IF [YJ C W AND KEYSTATE(a) = X THEN W := W U le(X,Y)I.

As in Dolev and Yao, the security of the protocols we look at will depend on the inability of the
penetrator to use the rules of the protocol to generate words that can be reduced by using a set of
reduction rules to some word that the penetrator should not be able to learn. As we have argued in
Ref. 9, the security of many protocols can be expressed at least partially, if not always entirely, in
terms of such properties. Examples of such rules are:

a. d(X,e(X,Y)) - Y where e(A,B) denotes encryption of word B with key A, and d(A,B)
denotes decryption of word B with key A, and

b. p(s(X)) - X where s and p are the successor and predecessor operators, respectively.

Thus we make the following definition of a specification of a cryptographic protocol.

Definition 2.1 - A specification of a protocol is a tuple

[T(,4,,F), E. S, R, Wo , Ao]I

where b is a countable set of variables, F is a finite set of function symbols, T(',F) is a set of terms
made up from X and F, E is a set of reduction rules defined on T(DF), S is a set of state variable
names. R is a set of protocol rules of the form

IF I C W AND A AND Cond(lA) THEN W := W U 0 AND A'.

where I and 0 consist of terms from T(I,,F) and A and A' are clauses made up of conjunctions of
clauses of the form T = D. where T is a state variable name and D E T(4,F). W o is set of words
from T(,D,F) initially known to the penetrator, and A0 is a set of initial predicates on the state vari-
ables.

Definitions of terms and related ideas are given below.

Definition 2.2 - Let 4 be a countable set of variables, and let S be a family of function sym-
bols disjoint from P with associated arity. A term is either a variable or a function symbol followed
by n terms, where n is the arity of the function symbol. A function symbol of arity zero is called a
constant. Let T(4I.S) denote the set of all terms made up from X and S. let V(T) denote the set of
variables in a term T. and let F(T) denote the set of function symbols in T.

We will follow the conventions of Prolog and represent function symbols by lowercase words
and variables by capital letters or words beginning with capital letters.

Definition 2.3 - A term-rewriting system over T($I,S) is a set of directed equations E such that.
for T, - T2 in E, V(T,) C V(T,). -^ is the finest relation over T(,D,S) containing E and closed
by substitution and replacement. We let -E* (or simply, -*), denote the transitive-reflexive closure
of -E.

3
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We will be interested in term-rewriting systems that are noetherian and confluent. That is, if
term A is reachable from B in a sequence of term rewritings, then it is reachable in a finite number of
such rewritings and if A is reducible to B and to C by two different single rewritings, then B and C
are both reducible to a fourth term D. These systems have the property that every term A is reduci-
ble to a unique irreducible term nf(A). See Ref. I for a discussion.

We can apply the rules of a protocol to move from one state to another. Suppose that we are in
a state where a penetrator knows a set of terms L, and the statement (Sl = Bi....Sk =Bk) holds.
We assume that all terms of L and all B, through Bk are irreducible, that is, that no further reduction
rules can be applied. Thus, for example, if we assume that a penetrator knows a word e(k,X), where
k is a constant and X is a variable, this means that the penetrator knows some word e(k,oX) where a
is a substitution assigning X to a term such that e(k,aX) remains irreducible. Hence the penetrator
might know e(k,m) or e(k,e(r,s)) but not e(k,d(k,m)) which reduces to m.* We then look for a rule
R =

IF I C W AND A AND Cond(I,A) THEN W := W U 0 AND A',

such that there is a substitution a assigning terms to the variables of R, L, and B, through Bk such
that ol C aL, u(Sl = Bl.Sk =Bk) implies oA, the statement Cond(al,oA) is satisfied, and UL
and aBl through aBk remain irreducible. If this is the case, we know that the system state satisfies the
conditions of rule R, and then we can move to the new system state. This is done by replacing L
with oL U nf(oO). where nf(aO) (or the normal form of oO) is the set of words obtained by applying
all possible reductions to the words of o(O), and replacing Si = oBi with Si = aBl if the former
appears in a(SI = B I. ... Sk =Bk) and the latter appears in nf(aA'), and adding T = oC to o(S =
BI. I Sk =Bk) if T = oC appears in nf(aA') but not in o(SI = 131 .. Sk =Bk).

For example, suppose the penetrator knows the word "message" and KEYSTATE(a) = key I.
If we let a be the substitution Y = message, Z a, and X keyl, then we can apply the rule

IF IYI C WAND KEYSTATE(Z) = X THEN W = W U te(X,Y)j.

so that the new state becomes one in which the penetrator knows Imessage,e(keyl ,message)I and
KEYSTATE(a) = keyl.

To prove that a protocol is secure, we want to show that certain states cannot be reached from
any initial state. To do this, we need to be able to determine, given a state description, what states
can immediately precede a state satisfying that description. We do this by matching up a state
description with the conclusion of a rule. But the techniques we apply are somewhat different than
the techniques we apply to find what states can immediately follow a state. Suppose that, as before,
we are in a state where a penetrator knows a set of words W, and the statement (SI = BI .... Sk
=Bk) holds. we now look for a substitution a such that oO reduces to a subset of aL and oA' reduces
to a statement that is does not contradict a(Sl = B.... Sk =B). We then examine oO and aA and
check that

(a) al, A, oL, and O(SI = B . ... Sk =Bk) are irreducible

(b) Cond(al,A) is satisfied, and

*Our reasons for making this assumption have nothing to do with the mathematical basis of the term-rewriting program that we use, which
could be applied equally as well if this restriction were not enforced. However, we have found this assumption useful in the analysis of
protocols.
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(c) if a(S I = B 1. Sk =Bk) implies o(S i = Bi) and aA contradicts a(Si = B ), then nf(aA')
implies o(Si = B1 ); otherwise, nf(a(A') fails to contradict a(S = B1 ).

The description of the state immediately preceding is then one in which the penetrator knows al U
aL, and aA holds together with all T = C from a(SI = B . . Sk =Bk) that are not specified by aA.

For example, suppose that we want to find all states immediately preceding one in which the
penetrator knows the word Q, where Q is variable standing for any word. If we let a be the substitu-
tion Q e(XY),. we can apply the rule

IF [YI C W AND KEYSTATE(Z) = X THEN W := W U Je(X,Y)j

to get the previous state to be one in which the penetrator knows Y and KEYSTATE(Z) = X. On
the other hand, if we apply rule R and let a be the substitution Y := d(X,Q), then e(X,Y) :=
e(Xd(XQ)) reduces to Q and the previous state is one in which the penetrator knows d(XQ) and
KEYSTATE(Z) = X.

As we see from above, often there is more than one a matching up a system state description
with the conclusion of a rule. Since we want to be able to describe all possible system states that can
immediately precede a state satisfying a given description, we want to be able, for each rule, to find
all a matching up the state description with the conclusion of that rule. Usually, an infinite number
of such a exist, but it is often possible to find a finite and complete set of such a, that is a set E such
that. if r is a substitution matching up the state with a conclusion of a rule, then there is a a E E such
that T = a for some substitution I.

We can find such complete finite sets by using algorithms developed for finding complete sets of
unifiers with respect to some equational theory 1101. The term-rewriting system we use is noetherian

and confluent, thus we were able to use one of a class of algorithms, called narrowing algorithms,
first discussed by Slagle 1121, that can be used to generate complete sets of unifiers with respect to
noetherian confluent term-rewriting systems. Accordingly we have written a program in Prolog 1131
that uses a modified version of the NARROWER algorithm of Rety et al. 1141 to generate from a
protocol specification and a description of a system state P a complete description of all system states
that can immediately precede a state that satisfies P.

Finally, once we have uncovered a mistake in a protocol, we would like to correct it and rever-
ify that it satisfies the security properties in which we are interested. Our task will be easier if we do
not have to reverify that the corrected protocol satisfies the security properties that the original proto-
col satisfied. To make this possible, we introduce the notion of a restriction of a rule.

Definition 2.4 - A rule R, =

IF 12 C W AND A2 AND Cond(l,,A2) THEN
W:= W U 02 AND A-)

is a restriction of a rule R, =

IF 11 C W AND Al AND Cond(11 ,A I) THEN
W:= W U 01 AND Aj

5
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if there is a substitution o acting as the identity on the variables of R2 such that

(a) oII C 012,

(b) oA2 - oAl,

(c) oCond(I2,A 2 ) - orCond(l1,A 1 ),

(d) oO, C o0i. and

(e) oA' = oA',.

It is easy to see that, if R2 is a restriction of RI, then, if P is reachable from P' through an
application of R2,. then there is a state P" that differs from P only in that the penetrator knows more
words in P" than in P. so that P" is reachable from P' through the application of R1 . Thus, if we
specify a state by listing a set of terms that must be known to the penetrator and a list of values that
must be assigned to a subset of that state variables, and no state satisfying that specification is reach-
able given a protocol specification containing a rule R, then no such state is reachable if we replace R
by one or more restrictions of R.

3. DESCRIPTION OF THE SELECTIVE BROADCAST PROTOCOL

The selective broadcast protocol described in Ref. 6 is intended to provide a means by which
one participant can encrypt a message so that it can only be decrypted by a designated subset of the
other participants, and that participant with the ability to decrypt a message cannot pass on the ability
or the message to other participants. The protocol relies for its security on a combination of encryp-
tion and tamperproof processors that will only perform certain actions prescribed by the protocol.
Messages are stored in the processors when decrypted and are not made directly available to the parti-
cipants. Examples of applications of this protocol are software protection. in which the messages
would be software that would only be executed inside the tamper-proof processors, and key distribto-
tion. in which the messages would be session keys that would never appear in the clear outside the
proccssors.

Since the protocol relies for its security on the correct operation of the processors, the set of
decisions that must be made by the processors is made as simple as possible, and the amount of data
that must be stored is kept at a minimum. This means that the processors do not check the input data
much; therefore they will perform their operations on just about any data that is input. Hence it must
be shown that there exists no set of data obtainable by a penetrator that, when input, could result in a
violation of the protocol's security requirements. Indeed, it was a flaw of this sort in an earlier simi-
lar protocol 151 that lead to the development of the selective broadcast protocol.

The protocol is as follows. Each participant has access to a tamper-proof processor A that has
access to a unique secret key q(A). The processors also have access to a common key m. Both m
and q(A) are only available to the processors and never appear in the clear outside the processors.
Messages are only decrypted inside the tamper-proof processors. Each processor has a unique identif-
ier, e(mq(A)), which is made public. If participant A wishes participant B to be able to use message
M. he first chooses an identifier J for M and has his processor encrypt M using the key
d(q(A),d(m,J)). He then sends the encrypted message and an encrypted key
e(m,e(q(B),d(q(A),e(q(B),d(q(A),d(m,J)))))) to B. B inserts key and message. along with the identif-
ier e(mq(A)), into his processor. The processor uses its knowledge of m, e(m,q(A)). and q(B) to
decrypt the key; it uses the key to decrypt the message and then runs the message.

6
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Each processor can be run in three modes: encrypt message, encrypt key, and decrypt message.
In all three modes, the user inserts two K-bit words X and Y (and possibly a third) and the processor
outputs e(m,q(A)), where q(A) is the processor's identifier, and
e(m,e((d(m,X),d(q(A),e(d(m,X),d(q(A),d(m,Y))))))).

In the encrypt message mode, the user inserts X = e(m,q(A)), Y = J, where J is the identifier
of the message, and message M. The second output of the processor reduces to J. This is used to
check that the system is working properly. The processor also outputs
e(d(q(A),e(d(m,X),d(q(A),d(m,Y)))),M), which reduces to e(d(q(A),d(m,J)),M), the encrypted mes-
sage.

In the encrypt key mode, the user inserts X = e(m,q(B)) and Y = J, where B is the processor
to which the user wishes to send the message. In this case the second output of the processor reduces
to e(me(q(B),d(q(A),e(q(B),d(q(A),d(m,J)))))), which is the encrypted key.

In the decrypt message mode, user B inputs X = e(m,q(A)), Y =
e(m,e(q(B),d(q(A),e(q(B),d(q(A),d(m,J)))))) and the encrypted message. In this case the second out-
put reduces to J. This is used to check that the key transfer has taken place correctly. The processor
also decrypts the key and uses it to decrypt the message. The processor then uses the decrypted mes-
sage according to the rules of the application.

This protocol is relatively simple. We were able to specify it by using only eleven protocol
rules and three rewrite rules, thus making an analysis that proceeded largely by hand practical. How-
ever, the complexity of the operations used, which made it difficult for an analyst to gain an intuitive
feeling for the security of the protocol, and its reliance on mechanisms similar to those employed by
an earlier flawed protocol [5], suggested that a formal analysis was necessary. These facts made the
protocol an excellent test case for our methods.

Our analysis found two security flaws in the protocol. Both were easily correctable, but they
were subtle and might not have been found in a less formal analysis.

The first flaw, described in more detail in Section 5.3, was not found directly as the result of
our attempts to prove the protocol correct, but it was found after inspection of some of the cases gen-
erated by the narrowing program. It relies on the incorrect operation of a penetrator's processor
when it is used in decrypt message mode. If the processor operates correctly otherwise, it success-
fully detects the error, but the penetrator can use the diagnostic (that is, the second word output) gen-
erated by the processor to obtain a key to a message that he was not authorized to have. This flaw
can be repaired by including less information in the diagnostic.

The reason that our methods did not directly lead to the discovery of this flaw is that our specif-
ication only described a system that operated correctly and did not take possible failures into account.
In Section 6 we discuss how our system could be changed to assist us in finding these kinds of errors.

The other flaw, described in Section 5.4, can be exploited even if the system operates correctly
in every respect, and it was found as a direct result of our use of the methods described in this report.
By supplying incorrect information to his processor when it is run in encrypt message mode, a pene-
trator can encrypt his own message by using another processor's key. This allows a penetrator to
impersonate other members of the network. This flaw can be corrected by relying on the processor,
instead of the protocol participant, to supply the first word input when it is run in encrypt message
mode. We altered the specification to correct this flaw and used our techniques to prove that the
altered specification satisfied the three security properties listed above.

7
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One more interesting fact emerged in our analysis of the selective broadcast protocol. Nowhere
in our proof of correctness did we need to use the fact that the processor identifiers q(A) were unob-
tainable by a penetrator. This does not necessarily mean that the encryption of the values q(A) was
not needed; in some applications the system might have security needs beyond the ones that we
analyzed in which the encryption of the processor identifiers was necessary. Moreover, the encryp-
tion of the processor identifiers may have some other effects necessary to system security besides
keeping the identifiers secret. Nevertheless, the fact that we did not need to u.e the secrecy of the
processor identifiers suggests that in certain applications we might be able to omit this layer of
encryption, and that it would be worth our while to attempt to model and verify, with respect to the
needs of a particular application, a system in which processor identifiers were unencrypted. This
shows that our techniques can be used not only to locate security flaws of a system but to identify
parts of a system that may be unnecessary to the achievement of security.

4. MODELING THE SELECTIVE BROADCAST PROTOCOL

We will assume that the system consists of an unspecified number of users, and that each user is
represented by a processor T that is capable of generating an infinite number of messages mess(T.N)
to be encrypted, where N ranges from I to infinity. We will assume that messages are generated in
numerical order. We only pay attention to the first K bits of each message where K is the block
length of the cryptosystem involved; thus, we can assume that each message is a K bit block. We
will assume that the penetrator has gained control of an unspecified number of processors. We will
identify each processor under control of the penetrator by q(IDslave) where ID is a processor identif-
ier, one of id, through idk, and each processor not under control of the penetrator by q(IDfree).

Since the protocol is meant to be used for several possible applications, the specification in Ref.
6 is necessarily incomplete. In particular. it is not specified how it is assured that each processor is
accessible only by its owner, how a processor identifies the author of a request for an encrypted mes-
sage, what other actions a processor takes upon receipt of a request besides generating the encrypted
key (for example, if the message is a program, the owner of the program may want to charge the
requester for its use), or what actions a processor takes after decrypting an encrypted message. All of
these actions are dependent upon the application, and they would be specified once the application is
chosen. Since they are also necessary to the security of the application, the protocol would have to
be reverified once application-specific rules were inserted. However, verifying the specification
before application-specific rules are inserted allows us to remove errors that would affect all applica-
tions, thus the verification process is easier later on.

We will give each processor five state variables. Each state variable takes on a term or a list of
terms as a value. One, MESSTATE(T), will hold the identifier of the next message that T can gen-
erate. Initially, MESSTATE(T) is I (or s(zero), where s denoted the successor operator). The
second, IDSTATE(T), holds the identifier of a message to be decrypted by the user and the identifier
of the originator of the message. The third, KEYSTATE(T), holds the value of the decrypted key.
The fourth, READYSTATE(T), is set equal to '"true" if the IDSTATE(T) and KEYSTATE(T) check
out. The fifth, RUNSTATE(T), holds the value of the decrypted message.

8
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The function symbols used in the modeling of the selective broadcast protocol are listed below:

name arity
zero zero
yes zero

s one
p one
e two
d two
q two
free zero
slave zero
name two
identical two
id l .... idk zero
mess two
m zero

We use the following three rewrite rules:

1. e(Xd(X.Y)) - Y

d(X,e(X.Y)) - Y

identical(X.X) - yes.

The proof that the ter-rewriting system thus defined is noetherian and confluent is also similar
to that given in Ref. 9, therefore we omit it here,

We first model the behavior of the free processors, which we assume behave according to the
rules of the protocol. Each free processor can generate and encrypt messages. Each message is iden-
tified by a name denoted hy name(q(X.Y),N) where q(XY) is the identifier of the processor originat-
ing the message, and the message is the Nth message generated by that processor The word
name(q(XY),N) does not necessarily uniquely identify the message, but the name together with
e(mq(XY)) does. The message itself (as opposed to its name) is denoted by mess(q(XY).N). The
distinction between message and name is that the name can be made public, while the message
remains secret. Thus the rule for generation and encryption of messages is given as

IF MESSTATE(q(ID.free)) = N THEN
W :- W U Iname(q(ID, free), N), e((d, q(ID, free), d(m, name(q(ID, free), J))), mess(q(ID, free), N))j
AND MESSTATE(q(ID). free)) := s(J)

where s(N) denotes the successor of N.

Each free processor can also encrypt a key for a message and send it to another processor P.
We will assume that an encrypted key for message name(q(IDfree) N) is sent onoy after a request for
that message has been received from P. A processor (or its owner) may decide not to honor a
request; however, we do not specify the decision process. Thus, this rule may be thought of as a
nondeterministic one. We will also assume that it is possible that a processor may forward a key

9
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without determining whether or not the identifier given is an identifier for an existing processor and
not some other K-bit word.

IF IX.YI C W THEN
W := W U le(m~q(ID. free)). e(m, e(d(m, X), d(q(lD, free), e(d(m, X), d(q(ID, free),d(m, YO))))

Finally. a processor can attempt to decrypt a message. First, a processor accepts a message
name and the identifier of the message originator. In doing so, it checks that IDSTATE does not
hold any old name-identifier pairs, that is. that IDSTATE = Izero,zero], and that KEYSTATE.
RUNSTATE. and READYSTATE are zero. It also checks that the new identifiers are not zero.
(This is in order that a hostile penetrator cause a state variable to be zeroed out.)

IF JX, YI C "W AND IDSTATE(q(ID, free)) = [zero~zerol AND
KEYSTATEtq(ID, free)) = zero AND READYSTATE(q(ID. free)) =zero
AND RUNSTATE(q(ID, free)) = zero
AND X # zero AND ntf(d(nm.Y) # zero THEN

lD)STATEqdD. free)) := JX. d(m.Y)j.

Next, the processor accepts and decrypts a key. Again, it checks that KEYSTATE, READY-
STATE. and RUNSTATE do not hold any old key values, that the new key is not zero, and that the

Z1LueS stored in IDSTATE are not zero.

IF IXI C W AND IDSTATE(q(ID, free)) = IY. ZI
AND KEYSTATEqID. free)) = zero AND RUNSTATE(q(ID, free)) = zero
AND READYSTATE(q(ID, free)) = zero AND

Y* zero AND Z # zero
AND nf(dtqtlD. free), e(Z. d(q(ID. free),.d(m. X)))))t zero THEN

KEYSTATE(q(ID. free)):=
ldqID. free). etZ, dq(ID. free),dm. X)))J.

Once key and identifier are loaded, the processor checks to see if they agree.

IF IDSTATE(q(ID, free)) [ X,YJ AND KEYSTATE(q(ID, free)) = IZI
AND RE.ADY STATE(q(I Dfree)) = zero AND RUNSTATE(q(ID, free)) = zero
AND X # zero AND Y #zero AND Z * zero THEN

READYSTATE := Iidentical(X. e(m.e(Y.Z)))I.

Trhe processor flow decrypts the encrypted message. In doing so, it first checks that no message
is presently stored in RUNSTATE. and that the new message is not zero.

IF 1XI CW AND KEYSTATE(q(ID, free)) = IYI
AND READYSTATE(q(ID, free)) = yes) AND RUNSTATE(q(ID, free)) = zero
AND Y # zero AND nf(d(Y,X)) * zero THEN

RIJNSTATE(q(ID, free)) :=Id(Y,X)I.

The processor can also zero out all variables at any time. In an actual application, this would
either be at the direction of the user or possibly in response to an error or both.

IDSTATE(q(ID. free)) = zero AND KEYSTATE(q(ID. free)) = zero
AND READYSTATE(q(ID, free)) = zero
AND RUNSTATE(q(ID, free)) = zero.

10
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We now model the interactions of a penetrator with the terminals under his control. First, the
penetrator can use a terminal to encrypt a message. This is similar to the way in which a free termi-
nal encrypts a message, except the values encrypted can be any arbitrary values input by the penetra-
tor:

IF X,Y.ZI C W THEN
W := W U Je(mq(ID,slave)),
e(m,e(d(m, Y), d(q(ID. slave), e(d(m, Y),d(q(ID, slave), d(m, X)))))),
e(d(q(ID, slave),e(d(m, Y),e(d(q(ID, slave),d(m, X)))), Z))I.

The rule for encrypting a key is identical to the rule for encrypting a message, except that the
last output is not given. Since the penetrator learns no more from that rule than from the rule for
encrypting a message. we will omit it.

Secondly, the penetrator can use a terminal to attempt to decrypt a message. These rules are
identical to the rules for the free processors, except that in the rule describing READYSTATE, the
penetrator can learn the terminal output. The READYSTATE rule is given as

IF IDSTATE(q(IDslave)) IX,Yj AND KEYSTATE(q(IDslave))= [ZI
AND READYSTATE(q(ID,slave)) = zero THEN

READYSTATE(q(ID, slave)) := [equal(X, e(m, e(Y. Z)))J AND
W := W U le(mq(ID,slave)), e(me(YZ)))l.

Finally, we assume that the penetrator can encrypt and decrypt data on his own,

IFIX,Yl C W THEN W:=W U le(X.Y)l
IFIX.YI C NN THEN W:=W U ld(XY)I.

A penetrator may try to attain at least three goals. One is to decrypt a message on one of the
processors under his control and that is not authorized to decrypt that message. This includes the
case in which another processor under his control may be authorized to decrypt the message. The
second is to convince a processor to decrypt a message supplied by the penetrator under the illusion
that it is decrypting a message supplied by a free processor. Last but not least, the penetrator may try
to obtain a copy of a free terminal's message in the clear.

The penetrator will have attained his first goal if he is able to make one of the state variables
RUNSTATE(q(IDIslave)) take on the value mess(q(ID2,free),K) without having had processor
q(IDI,slave) request the right to that message. He will have attained his second goal if he is able to
make one of the state variables RUNSTATE(q(ID2,free)) = mess(q(IDIslave),N) and IDSTATE =

IQ.q(lD3,free)l. He will have obtained his third goal if some mess(q(IDL slave),N) E W.

We will assume that initially the penetrator knows all processor identifiers e(m,q(A.B)), as well
as a set of messages mess(q(IDslave),B) belonging to the slave processors, along with their names,
and the value zero.

5. ANALYSIS OF THE SELECTIVE BROADCAST PROTOCOL

To perform our analysis. we used the following definition and lemma from Ref. 9.

Definition 5. 1 - Let E be a term in T(4,,F). Let a be a function symbol of arity zero. We say
that a appears on the right-hand side of E if E = a or E is the result of applying a finite number of
encryptions and decryptions to a.
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Lemma 5.2 - Let IT((,F),E,S,R,Wo,A0 be a specification of a cryptographic protocol. Let a
be a function symbol of arity zero. Suppose that a does not appear on the right-hand side of any
word in W0 . Suppose also that, for every rule in R of the form

IF S = T AND I C W AND pred(I, T) THEN
W := WU , O -. . . . . Okj AND S := T'.

a appears on the right-hand side of no word Oi, and if X is a variable appearing on the right-hand
side of some O, then X appears on the right-hand side of some word in I. Then a is unobtainable,
and any word in which a appears on the right-hand side is unobtainable.

Corollary 5.3 - The word m and any word with m on the right-hand side are unobtainable in
the selective broadcast protocol.

Proof: All rules of the selective broadcast specification satisfy the hypotheses of Lemma 5.2
except the penetrator READYSTATE rule. Thus the result is true for the protocol minus the penetra-
tor READYSTATE rule. Moreover, if H is a history in which the penetrator learns the word m or
any word with m on the right-hand side in the last state change, that last change must have taken
place via the penetrator READYSTATE rule. Thus the penetrator learns a word
e(m,q(ID,slave),e(m,e(Y,Z))) reducible to a word with m on the right-hand side, and Z is the value of
KEYSTATE(q(ID,slave)). By inspection of the reduction rules we see that Z must have m on the
right-hand side. Application of the narrow program shows us that, for KEYSTATE(q(ID,slave)) to
take on the value Z, we must have Z = d(q(ID,slave),e(Q,d(q(ID,slave),d(m,X)))), with previous
knowledge of X. But X must also have m on the right-hand side, which contradicts our assumption
that Z is the first word learned with m on the right-hand side. []

We are now ready to begin the analysis.

5.1 Obtaining Decrypted Words

In our initial attempts to run the narrower program td answer these questions, we kept on run-
ning up against the following question: Is it possible for the penetrator to obtain a word d(X,Y)
without first knowing X and Y. We decided to try to answer that question first.

We assumed that we were at a point in the history in which previously, if an irreducible instance
of d("',Y) had been obtained, then X and Y had been obtained previously to d(X,Y). In the first run
of the narrower program, we asked the program for all cases in which the penetrator could find
d(X,Y) without assuming previous knowledge of m, both X and Y, d(X,Y), or d(Z,d(X,Y)). (We
included the last because by our hypothesis knowledge of d(Z,d(X,Y)) would imply knowledge of Z
and d(X,Y).)

There were a number of responses. In each, either knowledge of an irreducible instance of
e(m,e(q(W),d(Z,e(q(W),d(Z,d(m,d(X,Y))))))) or knowledge of both Z and e(Z,d(X,Y)) was required.
After asking the narrowing program how these words could be obtained, it was decided to try to show
the following.

Lemma 5.4 - Assume that, at a particular point in the protocol, no irreducible instance of
d(W, ,W2 ) has been obtained where one of W, and W2 have not been previously computed. Let X
and Y be two words, one of which has not been previously computed, and assume that in the next
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step of the protocol an irreducible word of F is obtained, where F is the language defined by the fol-
lowing productions:

F: - d(X,Y)

F: - e(QF)

C: - d(m,F)

C: - e(L,d(L,C))

F: - e(m,e(L,d(L,C))

where L is the set of all irreducible terms, and Q is the set of all irreducible terms except m. Then
some word of F must have been obtained prior to this point.

Since no word of F is known to the penetrator initially, this means that all words of F are unob-
tainable. and that in particular d(X,Y) is unobtainable.

Proof: Running the narrower on d(X,Y) showed us that learning d(X,Y) required knowledge of
a word in F. Thus, to show that knowledge of a word in F requires previous knowledge of a word in
F we need to show that

(1) knowledge of a word e(Q.F) requires previous knowledge of a word in F or of an unob-
tainable word, and

(2) knowledge of a word from e(m,e(L.d(L.C))) requires previous knowledge of a word from
F or of an unobtainable word.

To answer (1). the next question we posed to the narrowing program was: how can we find
instances of e(ZW) where Z # m and W was not previously known? This was done by asking the
narrowing program to find e(Z,W), but to throw out solutions of the form e(m,W). The program was
also told to throw out solutions that required input of m, W, or d(Re(Z,W)), since m is unobtainable,
W is assumed not to be previously known, and knowledge of d(R,e(Z,W)) would by hypothesis
require previous knowledge of e(Z,W). All solutions turned out to require previous knowledge
instances of

(a) e(m,e(Ad(B.e(A.d(B.d(rn,e(ZW))))))), or,

(b) e(Ae(ZW)).

Assuming that W was in F, all words of the form listed above would also have to be in F.
Thus (I) holds.

To show that (2) held, we asked the narrower program how to obtain instances of
e(m,e(A,d(B,C)). We assumed that C E C. We asked the program to rule out solutions requiring
previous knowledge of m, e(mC) (since e(m,C) is assumed to lie in F if irreducible), and
d(Z,e(m,e(A,d(B,C)))). Quite a few solutions were produced. All of them required, previous
knowledge of instances of one of the following:

13
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(a) e(m,e(D,d(E,e(D,d(E,e(A,d(B,C)))))))

(b) e(m,e(D,d(E,e(Dd(B,C)))))

(c) e(m,e(E,d(AC)))

(d) e(m.e(D,E)) where C = e(A,E)

(e) e(m,E) where C = e(A,d(DE))

(f) E where C = e(A,d(D,d(m,E)))

(g) e(m,e(Dm))

(h) e(me(Dd(E,e(Dm))))

(i) e(De(m.e(A.d(B.C)))) and D.

Some cases required no input words, but required that KEYSTATE and IDSTATE must have
certain values. When we ran the narrower program on these, however, we found that they required
prior knowledge of one of the words listed above.

We consider each case.

In case (a) - e(me(Ad(B,C))) is in F by hypothesis. Hence so is e(m,e(Dd(E,e(A.d(B,C)))))
and thus ,o is e(me(D.d(E.e(D.d(E,e(A,d(B,C))))))).

In case (b) - C E C by hypothesis, so e(mxe(Dd(E.e(Dd(B,C))))) E F. A similar argument
works for case (c).

In case (d) - the fact that C E C means that C E d(mF) or e(L,d(L,C)). Since C = e(A,E), C
must be a member of the latter. Thus E = d(RS), where S E C. Thus e(me(D,E)) is in F. A
similar argument works for cases (e) and (t).

In cases (g) and (h), the word m appears on the right-hand side of the input and so those words
are unobtainable.

In case (i) - D cannot be m, since m is unobtainable, and so e(D,e(m,e(A,d(BC)))) must be in
F.

We now show that d(XY) is unobtainable unless the penetrator already knows X and Y. Sup-
pose that a penetrator has obtained d(X,Y) without having previously obtained X and Y. Then the
penetrator must have already obtained a word from F. Let W he the first such word obtained by the
penetrator. If W were d(X,Y), then the penetrator would have already known a word from F. If W
were in e(Q,F), then by our analysis of the results of running the narrower on e(AB), the penetrator
would have previously obtained a word from F. Finally, if W were in e(m,e(Ld(L,C))), then by our
analysis of the results or running the narrower on e(m,e(A,d(B,C))), the penetrator would have
already obtained a word from F. Since the penetrator does not know any word of F initially, we can
show by induction that F, and hence d(XY), is unobtainable. I

14
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As a corollary we obtain the result that a penetrator cannot find the key to a message encrypted
by a free terminal, for such keys are of the form d(q(ID,free),d(m,name(q(ID,free),N))). Knowledge
of such a key would imply knowledge of q(ID,free) and d(m,name(q(ID,free),N)), which would in
turn imply knowledge of m. But m is unobtainable.

5.2 Obtaining a Message in the Clear

Our next goal was to find out whether or not a penetrator could obtain a message
mess(q(IDfree),N) in the clear. First we asked the narrower to find under what conditions a penetra-
tor could obtain such a word. We asked it to ignore solutions that required the penetrator to have
prior knowledge of m or d(Zmess(q(ID,free),N)), since by Lemma 5.3 m is unobtainable, and by
Lemma 5.4, d(Z,mess(q(ID,free),N)) is unobtainable unless mess(q(ID,free),N) is already known.
The program derived a number of solutions, each of which required one of the following conditions:

(a) KEYSTATE(q(Y,slave)) = d(Zd(mmess(q(ID,free),N) and IDSTATE(q(Y, slave)) =

[R,Z1

(b) prior knowledge of e(m,e(Xd(Z,e(X.d(Z,d(m,mess(q(ID,free),N)))))))

(c) prior knowledge of X and e(X,mess(q(ID,free),N)).

When we ran the program on the first condition, we found that attaining that state required prior
knowledge of one of the following:

(a) mess(q(IDfree),N)

(b) e(me(q(ID2,slave).d(Y.d(m,mess(q(ID, free) N)))))

(c) e(m,e(q(ID2,slave),d(Y,e(q(ID2,slave),d(Z d(m.mess(q(ID. free), N))))))).

This and the results of running the narrower program on the last two conditions prompted us to
try and verify the unobtainability of the irreducible words of the following language A:

A: - mess(q(ID,free),N)

A: - e(B,A)

C: - d(m,A)

C: - e(L,d(L,C))

C: - e(L,d(L,A))

A: - e(m,C)

where L is the set of all irreducible terms and B is the set of all irreducible terms except
d(q(ID,free),d(m,name(q(ID, free),N))).

Theorem 5.5 - A as defined above is unobtainable.
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Proof. The results of running the narrowing program on mess(q(ID, free), N) show us that
knowledge of mess(q(ID, free), N) already implies prior knowledge of a word of A. Thus we can
show that A is unobtainable if we show that

(1) knowledge of e(A,B) where A # d(q(ID, free),d(m, name(q(ID, free), N))) and B E A
implies previous knowledge of a word from A;

(2) knowledge of e(m,e(A,d(B,C)) where C E C implies previous knowledge of a word from
A, and;

(3) knowledge of e(m,e(A,d(B,C)) where C E A implies previous knowledge of a word from
A.

To show (1), we run the narrower on e(A.B) again, but this time we do not exclude instances of
e(m,.B). but instances of e(d(q(ID, free).d(m,name(q(ID, free), N))), mess(q(ID, free). N)). We also
exclude cases that require previous knowledge of m or d(C~e(A.B)). We came up with cases that
required previous knowledge of one of the following:

(a) e(m.e(q(S.T).d(V~e(q(S.T).d(V~d(m~e(A.B)))))))

(b) e(m.e(q(S.T).d(V,e(q(S.T).d(V.B)))))

(c) e(m.c(q(ST).d(V,e(q(S.T).W)))) where B = e(V.W) and e(m,V)

(d) e(m.e(q(ST).d(V.W))) where B = e(V.d(q(S,T.,W)) and e(mV)

(e) e(m~e(q(ST),W)) and e(mV) where B = e(V,d(q(S.T),e(V.W)))

(f) e(rn.W) and e(m.V) where B =e(V.d(q(S.T),e(V.d(q(S.T).W))))

(g) W and e(rn.V) where B = edV~d(q(ST).e(V,d(q(ST)d(m,W)))))

(h) e(m~e(q(S.T).d(rn.V).e(q(S.T).W)))) and V where B = e(d(m.V),W)

(i) c(m.e(q(ST),d(d(m.V),W))) and V where B =e(d(m.V),d(q(S.T).W))

(j) e(m.e(q(S.T).W)) and V where B =e(d(m,V),d(q(S.T),e(d(m,V).W)))

(k) e(m.W) and V where B = e(d(mi,V),d(q(ST).e(d(m,V).d(q(S.T).W))))

(1) W and V wherc B = e(d(m.V).d(q(S,T),e(d(m.V),d(q(S,T).d(m.W)))))

(in) B

(n) e(C,e(A.B)) and C

We want to show that knowledge of e(A,B) implies previous knowledge of a word from A.

Cases (a) and (b can he easily shown to imply previous knowledge of a word from A.
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In case (c) - B = e(V,W). Since B E A, either W is in A or V = m and W E C. But e(m,V)
is known, so V cannot be m. Thus W E A. Hence e(q(S,T),W) E A, and so
e(m,e(q(S,T),d(V,e(q(S,T),W)))) E A. A similar argument works for case (h).

In case (d) - B = e(V,d(q(S,T),W)), and so d(q(S,T),W) must be in A. But A contains no

elements of this form. A similar argument works for cases (e) through (g) and (i) through (1).

In case (m) - previous knowledge of B E A is needed.

In case (n) - previous knowledge of e(C,e(A,B)) and C is needed. Since C is known, C cannot
be e(q(ID,free),d(m,N)), so e(A,e(AB)) E A.

Next we consider case (2). We take the output of the narrower on e(m,e(A,d(B,C))) in which it
was asked to ignore solutions requiring previous knowledge of e(mC) (in A), m, or
d(Z,e(m,e(A,d(BC))). Recall that these required previous knowledge of one of the following:

(a) e(me(Y,d(X,e(Y,d(X,e(A,d(B.C)))))))

(b) e(m,e(Y,d(X,e(Y,d(B,C)))))

(c) e(m.e(Y.d(A,C)))

(d) e(m,e(Y.X)) where C = e(AX)

(e) e(m,X) where C = e(A.d(Y,X))

(f) X where C = e(A,d(Y,d(mX)))

(g) e(m.e(Y,m))

(h) e(me(Y,d(X,e(Ym))))

(i) e(X,e(me(Ad(B,C)))) and X.

The same previous arguments also hold in this case, except for case (1). For that case, we note
that, since X is known, it cannot be d(q(IDfree).d(m,name(q(ID,free),N))), therefore
e(Xe(m,e(Ad(B,C)))) E A.

Finally, we consider case (3). We run the narrower on e(m,e(A,d(BC))) where C is now
presumed to be in A, this time asking it to ignore all results that require previous knowledge of C,
d(ZC), m, or d(Ze(me(A,d(B,C)))). (Words of the form d(Z,C) are excluded because knowledge
of such a word would imply previous knowledge of C). We found that previous knowledge of one of
the following was required:

(a) e(m.e(q(R,S),d(X,e(q(R,S),d(X,e(A,d(B,C)))))))

(b) e(m,e(q(R,S).d(X,e(q(R,S),d(BC))))

(c) e(m,e(q(R,S),d(A,C)))

(d) e(m,e(q(R,S),Y)) and e(m,A) where C = e(A,Y)
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(e) e(m,Y) and e(m,A) where C = e(A,d(q(R.S),Y))

(f) Y and e(m,A) where C = e(A,d(q(R,S),d(m,Y)))

(g) e(m~e(q(R.S).Y)) and Z where C = e(d(m,Z).Y)

(h) e(m,Y) and Z where C = e(d(m.Z),d(q(RX),Y))

(i) Y and Z where C = e(d(mZ),d(q(R.X).d(m,Y)))

(j) words .Wjih mn on the right-hand side

(k) e(X,e(m,e(A,d(B.C)))) and X

Cases (a). (b), and (c) are in A by the fact that C E A and the definition of A.

In case (d). e(m.A) is known, so A # m. Thus, since C = e(A.Y) and C E A, Y E A.

In cases (e) and (f). C E A and A * m as before. so d(q(RS).Y) and d(q(R.S),d(m.Y)) must be
in A. But they fail to satisfy the definition.

In case (g). d(m.Z) * m, so Y E A. and so e(m~e(q(R.S),Y)) E A by definition.

Cases (h) and 6i) are similar to cases (e) and (f), with d(m,Z) substituted for A.

In case (j), words with mn on the right-hand side are unobtainable.

In case (k. the fact that X is known means that X # d(q(ID~free),d(m, name(q(ID. free). NM,)
and thus e(X.e(m~e(A.d(B.C)))) E A by definition.

Thus we have shown that A. and hence mess(q(I D. free), N)), is unobtainable. I

As a corollary, we have that the only words of the form e(Z. mess(q(X, free). Y)) obtainable by
the penetrator are those where Z is dq(X. free)d(m. name(q(X, free, Y))).

5.3 Obtaining the Rights to an Encrypted Message

Now we show that a penetrator cannot decrypt a message without first paying for it. In other
words, we will prove the following theorem:

Theorem 5.6 - It is impossible for RUNSTATE(q(ID, slave)) =mess(q(1D2, free). N)) unless
the rule

IF JXJ C W THEN
W := W U le(m~q(ID. free)). e(m, e(d(m. X),.d(q(ID. free), e(d(m. X), d(q(ID. free), d(m, J))))))

has been applied with X =e(m, q(I D, slave)) and J = name(q(I D, free), N).

To prove this theorem, first we asked the narrower program for the conditions necessary for the
state value RUNSTATE(q(ID,slave) = mess(q(1 D2, free), N). It responded that
KEY STATE(q(l D, slave)) must be X where the penetrator has prior knowledge of
e(X ,mess(q(1D2, free), N)), and that REA DYSTATE(q(I D. slave)) must be 'yes'.
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According to the results of Section 5.2, X must be equal to
d(q(1D2.free),d(m,name(q(1D2, free), N))). Thus our next step was to ask the narrower program what
were the conditions for KEYSTATE(q(ID, slave)) = d(q(1D2, free),d(m,name(q(1D2, free), N))) and
READYSTATE(q(ID, slave)) = 'yes'. The narrower responded:

(a) KEYSTATE(q(ID, slave)) = d(q(1D2, free),d(m,name(q(ID, free), N))) and
IDSTATE(q(ID, slave)) = [name(q(ID, free), N),q(1D2, free)], and;

(b) KEYSTATE(q(ID, slave)) = d(q(1D2, free),d(m,name(q(ID, free), N))) and
IDSTATE(q(ID,slave)) = Ie(m,e(Y ,d(q(1D2, free),d(m, name(q(1D2, free), N))))), Y1.

We asked the narrower what conditions were necessary for (a) or (b) to hold. It responded that,
in the first case, prior knowledge of

e(m. e(q(ID. slave). d(q(1D2. free), e(q(ID, slave), d(q(1D2, free), d(m, name(q(1D2, free),.))))

was necessary, and in the second, either prior knowledge of

e(m. e(q(ID. slave), d(Y, e(q(ID. slave), d(q(1D2, free), d(m, name(q(1D2, free). N)))))))

was necessary. or prior knowledge of

e(m, e(q(ID. slave), d(q(ID2. free), d(m, name(q(1D2, free), N)))))

and

I DSTATE = [e(m, e(q(ID. slave), d(q(1D2, free), d(m. name(q(1D2, free). N))))), q(ID, slave)]

was necessary. Thus all we need to show is that none of the above words are obtainable without
application of the rule

IF IX.JJ C W THEN
W :=W U Je(m~q(ID, free)). e(m, e(d(m. X), d(q(ID, free), e(d(m, X), d(q(ID, free), d(m, J))))))l

with X =e(m,q(ID, slave)) and J =name(q(ID, free), N).

First we asked the narrowing program what conditions would be needed for the penetrator to
learn

e(m, e(q(ID. slave), d(q(1D2, free), d(m, name(q(1D2, free), N))))).

asking it to ignore conditions that required previous knowledge of m,

d(q(1D2, free), d(m. name(q(1D2, free), N)),

or

d(Z, e(m. e(q(ID, slave), d(q(1D2, free), d(m, name(q(1D2. free), N)))))).
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It responded with a number of conditions, each of which involved at least one of the following
requirements:

(a) KEYSTATE(q(B, slave)) =d(q(l D2, free) ,d(m, name(q(1D2, free), ,N)))
and IDSTATE = [X,q(ID,slave)I for some B;

(b) KEYSTATE(q(B, slave)) =d(X, e(q(ID, slave), d(q(1D2, free), d(m, name(qI D2, free), N)
and IDSTATE = [Y.XJ;

(c) prior knowledge of
e(m,e(q(A. free),d(X,e(q(A, free),d(X, e(q(ID, slave). d(q(D2, free),
d(m, name(q(ID2. free), N))))))))):

(d) prior knowledge of
e(m,e(q(A, free),e(q(l D,slave).e(q(A,free) .d(q(1D2, free),d(m, name(q(1D2, free), N)))))));

(e) prior knowledge of
e(m,e(q(1D2 .free) .d(q(B. slave), d(m, name(q(1D2, free), N)))));

(f) prior knowledge of
e(m~e(q(B~slave),d(X,e(q(B. slave).d(X,e(q(l Dslave)d(q(1D2, free),
d(m, name(q(1D2. free), N)))))))));

(g) prior knowledge of
e(m, e(q(B, slave).d(q(I Dslave),e(q(B. slave),d(q ID2, free),d(m, name(q(l D2, free), N)))))),

(h) prior knowledge of
X and e(X,e(m, e(q(I Dslave).d(q (ID2,.slave),name(q(1 D2. free), N))))), or;

(i) prior knowledge of a word with m on the right-hand side.

Condition a raises some interesting questions. When we ran the narrower on the KEYSTATE
value described in condition a, we found that to obtain it, the penetrator needs only to have prior
knowledge of the word

e(m, e(q(B, slave), d(Q, e(q(B, slave), d(q(1D2, free). d(m, name(q(1D2, free), N))))))).

and that IDSTATE(q(B, slave)) = (X,QJ. If Q =q(1D2,free), then processor q(B.slave) could have
obtained the word by buying mess(q(1 D2, free, N) from terminal q(1D2,free). Since we need
IDSTATE(q(B, slave)) to be equal to [X,q(ID,slave)J for condition a to hold, then knowledge of

e(m, e(q(B, slave), d(q(1D2, free), e(q(B, slave), d(q(1D2, free), d(m, name(q(1D2, free), N)))))))

is not enough to bring about condition a. However, if it is possible for a penetrator to exploit some
flaw in the system software or hardware to force IDSTATE(q(B, slave) to take on the value
[X,q(ID,slave)] when it should be [X~q(ID2, free)J, the penetrator will be able to achieve condition a,
obtain the word
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(m, e(q(ID, slave), d(q(ID2, free), d(m, name(q(ID2, free), N)))))

and thus be able to have mess(q(ID2,free),N) decrypted by processor q(ID,slave) without authoriza-
tion from terminal q(1D2,free). Thus, we have found, if not exactly a flaw in the protocol, a point of
vulnerability. The diagnostics that are used to detect and inform the user of a system flaw can cause
a security flaw in the protocol.

However this vulnerability is easy to fix, assuming that we consider it a threat. Instead of hav-
ing the processor output its attempt to decrypt the encrypted value of the message number in this
case, we can require the user to insert the message number, have the processor do the decryption,
compare the decrypted value with the message number, and output "yes" or "no."

Attaining either condition a or b requires prior knowledge of one of the following:

(a) e(me(q(ID.slave),d(q(ID2,free),d(m,name(q(ID2,free),N))))) with B = ID

(b) e(m~e(q(B.slave),d(q(D, slave),e(q(Bslave),d(q(D2, free),d(m, name(q( 1D23 free), N)))))))

(c) e(m,e(q(B,slave),d(X,e(q(B,slave),d(X, e(q(ID,slave),d(q(ID2, free),
d(m.name(q(ID2, free), N))))))))).

After some experimentation we decided to show that the penetrator could not learn an odd where
odd words are defined as follows.

To define odd words we need the standard definition of occurrence.

Definition 5. 7 - If T is a term, we define the set of occurreiices in T, O(T) and their values as
follows,

(1) X E O(T) and T/X = T.

(2) If T = f(T .... Tn), and o E O(T,), then i,o E O(T i ) and T/i.o = Ti/o.

If o # X, define prefix(o) to be the string o minus the last number, that is, the occurrence of the
parent term of the term occurring at o.

We can now define odd words.

Definition 5.8 - We begin by defining even words. These are all words from T(c,,F) contain-
ing no variable symbols that satisfy the following criteria:

(a) The right-hand side of the word is d(m,name(q(ID2,free),N)).

(b) There is at least one other occurrence of in at some 1 1. ... 1. 1 such that e(m,Y) occurs at
the prefix of 1.1 ... 1.1.

(c) Let 0 be the last such occurrence. Then, for all expressions E, the number of occurrences
S of the form 0. 1. 1 ... I such that E occurs at S is even.

A word is odd if it satisfies the first two criteria and not the last.
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Aword from T(4',F) containing variable symbols is even (respectively, odd) if itsaifethe
first two criteria and all instances are even (respectively, odd). Thus

e(m, e(q(A, free), d(q(B, slave), d(m, name(q(1D2, free), N)))))

is odd, and so is

e(q(B, slave), e(m, e(q(B, slave), d(m, name(q(1D2, free), N))))).

However,

e(m, e(X, d(Y, e(X, d(Y, d(m, name(q(1D2. free), N)))))))

is even. The word

e(m, e(X, e(Y, d(m, name(q(1D2, free). N)))))

is not even, but is not odd either, since the instance given by the substitution X -Y is even.

Note that

e(m, e(q(ID, slave), d(q(1D2, free), d(m, name(q(1D2. free). N)))))

is itself an odd word. and that the results of the narrower show that previous knowledge of an odd
word is required in order to learn it.

Lemma 5.9 - Odd words are unobtainable.

Proof. We ran the narrower on X, where X was assumed to be an odd word. All of the neces-
sary conditions turned up by the narrower fall into one of the following cases:

Prior knowledge of one of the following:

(a) e(m~e(S,d(R~e(S,d(R,d(m,X))))))

(b) e(m,e(S,d(R,e(S~d(R,C))))) where X = e(m,C)

(c) e(m,e(S,d(R,e(S,C))))) where X = e(m.e(R,C))

(d) c(m,e(SAdR,C))) where X = e(m,e(R,d(S.C))

(e) e(m,e(S,C)) where X = e(m,e(R,d(S~e(R,C)))

(f) e(m.C) where X = e(m~e(R,d(S,e(R,d(S,C)))))

(g) C where X = e(m,e(R,d(S~e(T,d(S~d(m,C)))))

(h) e(m,e(q(A,B),D)) and C where X = e(D,C)

(i) C and e(m,D) where X = e(d(q(A,B).D).C)
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0j) C and D where X = e(d(q(A.B).d(m,D)),C)

Wk C and e(m~e(q(A,B).d(R~e(q(A,B),D)))) where X = e(DC)

(1) C and D where X = e(d(q(A.B),e(R,d(q(A,B).d(m.D)))).C)

(in) C and e(m.D) where X = e(d(q(AB).e(R.d(q(A,B),D))),C)

(n) C and e(m.e(q(A.B).D)) where X = e(d(q(A,B),e(R,D)).C)

(o) e(D.X) and D

(p) C and D where X = e(D.C)

(q) C and D where X = d(D,C)

The narrower also found the following state values that would produce an odd word

(r) KEYSTATEtq(A. slave)) = C and I DSTATE(q(A, slave))=
IRDI where X = e(rne(DC))

()KEYSTATE(q(A. slave)) = d(D.C) and I DSTATE(q(A, slave))=
[R.DI where X = em.C)

(t) KEYSTATE(q(A. slave)) = d(D~d(rn.X)) and I DSTATE(q(A, slave)) =IR'DI.

Clearly, cases (a) through (g) require previous knowledge of an odd word. In cases (h), W,)
(0). and (p) C is an odd word unless D =in. in which case e(rn~e(q(A.B).D)),
e(m.e(q(A.B).d(R~e(q(A.B).D)))). and D. respectively. are unobtainable. Cases (i). (j). (1) through
(n). and (q) require previous knowledge of an odd word.

By running the narrower program on the values for KEYSTATE. we see that prior knowledge
of one of the following is required.

For case (r

rl. X

For case (s)

SI. X

s2. e(m~e(q(A.B).d(D~e(q(A.B).d(D.C))))) where X = e(m.C).

For case (t)

ti. X

t2. e(m,e(q(A,B),d(D,e(q(A.B).d(D~d(m,X))))))

In each case, previous knowledge of an odd word was required. j
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Now recall that we are attempting to show that any irreducible instance of

e(m, e(q(ID. slave), d(q(1D2, free), e(q(ID, slave), d(q(1D2, free), d(m, name(q(1D2, free), N)))))));

e( m. e(q(ID. slave), d(Y. e(q(ID, slave), d(q(1D2, free), d(m, name(q(1D2, free), N))))))), or;

e(m. e(q(ID. slave), d(q(1D2, free), d(m, name(q(1D2. free), N)))))

is unobtainable unless terminal q(ID~slave) has obtained the rights to mess(q(1D2, free), N) from termi-
nal q(1D2,free). However the first and third words are odd, and so is every instance of the second.
except when Y = q(11D2,free). Thus all that remains to be shown is that

eCni c~(q(ID. slave), d(q(1D2., free), e(q(ID, slave), d(q(1D2, free), d(m, name(q(1D2, free), N)))))))

is unobtainable unless terminal q(ID,slave) has obtained the rights to mess(q(1 D2. free), N) from termi-
nal qdID2.free). After running the narrower on that word, we found that all cases in which the pene-
trator "as not required to know a word that was already shown to be unobtainable or to have pur-
chased the program to run on processor q(ID,slave) required previous knowledge of another word
,Aith e(q(ID.slave).d(q(1D2. free).d(m~name(q(IDZ, free), N)))) on the right-hand side. Thus our next
task %Aas to prove the following.

I c.mnna 5. I1) - No even word with e(q(ID, slave),d(q(1D2, free),d(rn,narne(q(1D32.free), N)))) on
the r'eht-hand side is obtainable except by application of the rule

IF JXJh c W THEN
W =W U le(m.q(ID. free)). e(m. e(d(m. X), d(q(ID. free), e(d(m, X), d(q(ID. free), d(m, J))))))lI

%%ith X en,q(I Dslave)) and J = name(q(ID, free),.N).

Proof We ran the narrower onl N, where X was assumed to be an even word with
et q(l D.slax e).d(q(1 D2, free),d(nmname(q(I D2, free),.N)))) on the right-hand side. Again, we asked the
narro~ker to ignore cases requiring previous knowledge c,' m or d(ZX). We came up with the cases
(excluding cases involving application of the key-purchase rule with the input listed above) in which
prior knowledge of one of the following was required:

(a) c(m,e(Q.d(R.e(Q~d(R.d(m,X))))))

(b) e(rn~e(Q.d(R.e(Q~d(R,C))))) where X = e(m,C)

(c) e(m~e(Q.d(R~e(Q.C)))) where X = e(m,e(R.C)

(d) c(m~e(QAdR,C))) where X = e(m~e(R,d(Q,C)))

(e) e(mxe(Q.C)) where X = e(m,e(R,d(Q,e(RC)))

(f) e(m.C) where X = e(m,e(R,d(Q~e(R,d(Q.C))))

(g) C where X = e(m~e(R,d(Q,e(R,d(Q,d(m,C)))))

24



NRI REPORT 9265

(h) C where X = e(Q,C)

([i e(Q,X)

(j) C where X = d(Q,C)

or

(k) KEY STATE(B, slave) =d(D,d(m.X)) and IDSTATE(B, slave) = R,DJ

(1) KEYSTATE(B, slave) =d(D,C) where X =e(m,C) and IDSTATE(B, slave) = IR,DI

(in) KEYSTATE(B. slave) = C where X = e(m,e(D,C)) and ILDSTATE(B, slave) = IR,DI.

Clearly. cases (a) and (b) require prior knowledge of a word with right-hand side
e(q(I D. slave), d(q(1 D2,free). d(m. N))). So does (c) unless R = q(ID,slave) and C =

d(q(1D2.free).d(mN)). in which case e(m~e(Q~d(R,e(Q.C))) must be an odd word. Similar arguments
work for cases (d) through 0). except for case (g) where X
= e(m.e(R.d(Q~e(R~d(Q~d(m~name(q(I D2, free). N))))))). But in this case (g) is the application of the
key-purchase rule that we had ruled out.

Running the narrower program on cases (k) through (mn) gives us requirements for prior
knowledge of one of the following cases.

For case (k)

ki. X

For case (1)

it. X

12. e(in.e(q(A.B),d(D.e(q(A.B).d(D.C))))) where X =e(m,C)

For case (in)

ml. X

mn2. e(in,e(q(A.B),d(D,e(q(AB).d(D~d(m,X))))))

All cases require previous knowledge of an odd word. I

We have shown that the penetrator cannot decrypt a message on a given processor unless that
processor has been so authorized by the message's originator, and so Theorem 5.6 is proved.

5.4 Substituting Messages

A message mess(q(I D, slave), N) has been successfully substituted for a message
mess(q(1 D2, free), Q) if there is a processor q(B,free) with

IDSTATE(q(B,free)) = I name(q(1D2, free), Q),q(1 D2, free)]
RUNSTATE(q(B, free)) =mess(q(TD, slave), N).
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Accordingly, we ran the narrower on these two state values and found that the following set of
conditions must hold immediately prior to attaining these values:

knowledge of e(X, mess(q(ID, slave), N))
IDSTATE(q(B, free)) = I name(q(1 D2, free), Q),q(l D2, free) I
KEYSTATE(q(B,free)) = X
REA DYSTATE(q(B. free)) = yes
RUNSTATE(q(B, free)) = zero.

By running the narrower on the four state values given above, we find that the following must
have held previously:

IDSTATE(q(B. free)) = name(q (1132, free), Q), q(l D2, free) I
KEYSTATE(q(B, free)) =d(Y ,d(m,name(q(1D2 ,free) ,Q)))
READYSTATE(q(B, free)) = zero
RU NSTATE(q(B. free)) = zero.

Thus the penetrator can substitute mess(q(ID, slave), N) for mess(q(l D2. free). Q) if and only if he
can obtain e(d (q(1 D2, free).d(m, name(q(1 D2. free), Q))), mess(q(I Dslave),N)) and cause the state vari-
ables of processor q(B.free) to take on the values given above.

By running the narrower on the state values listed above, we find that one of the following is
required to hold previously:

(a) IDSTATE(q(B, free)) = nare(q(I D2, free),.Q),q(B, free)]
KEYSTATE(q(B. free)) = zero

REA DYSTATE(q(B, free)) = zero
RUNSTATE(q(B. free)) = zero
with knowledge of name (q(l D2, free). Q)

(b) IDSTATE(q(B, free)) =I name(qtB, free).Q).q(1D2. free) I
KEYSTATE(q(B, free)) = zero
READY STAT E(q(B, free)) = zero
RUNSTATE(q(B~tfree)) = zero
with knowledge of

e(ni,e(q(B~free)bd(q(1D2 .free) ,e(q(B,free) .d(q(1D2 ,free),d(m~name(q(1D2 .free) .Q)f)))).)

The word name(q(1 D2, free),.Q) is obtainable when processor q(ID2.,free) publishes
name(q(1 D2,.free), Q), while the word

e(m,e(q(B. free), d(q(l D2. free), e(q(B. free),d(q(1 D2, free),d(i, name(q(1 D2. free), Q)))))))

is obtainable by having processor q(B,free) purchase the rights to mess(q(1D2,free).Q).

When we run the narrower on the state values given in a and b, we are told that they may be
obtained if all state values are previously zero and name(q(1 D2, free), Q) is previously known, and. in

case a, if e(m,q(B~free)) is previously known, and, in case b, if e(m~q(1 D2, free)) is known. Since all
e(m,q(S,T)) are assumed to be known, and since all state values can be made zero at any time by

applying the rule that sets all the values to zero, and since name(q(1 D2. free), Q) is obtainable, this set
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of state values is obtainable. Thus, working our way back up, we have shown that the set of state
values

IDSTATE(q(B, free)) =[name(q(1D2, Q) ,q(1D2, free)]
RUNSTATE(q(B, free)) = mess(q(ID, slave) , N)

is obtainable if and only if the word

e(d(q(1D2,free),d(m,name(q(1D2,free),Q))) ,mess(q(ID,slave) ,N))

is obtainable.

Our next task was to show that

e(d(q(1D2 .free) ,d(m,name(q(1D2 ,free) ,Q))) ,mess(q(ID ,slave) ,N))

was unobtainable, and therefore we set out to do this. However, after running the narrower on

e(d(q(1 D2, .free), d(m, name(q(1D2, free), Q))), mess(q(ID, slave), N))

we found that this word was obtainable by the penetrator. The scenario is as follows. Processor
q(ID~slave) obtains an encrypted key to mess(q(1D2.free),Q) from Processor q(1D2,free). Processor
q(ID~slave) applies the rule for encrypting messages:

IFIABMI C W THEN
W := W U fe(m~q(ID, slave)),
e(m. e(d(m, B), d(q(ID. slave),.e(d(m, B). d(q(ID, slave), d(m. A)))))),
e(d(q(ID, slave). e(d(m. B). e(d(q(ID. slave). d(m, A)))). M))l

with input

A =e(m. e(q(I D. slave), d(q(1 D2. free). e(q(I D, slave). d(q(1 D2. free), d(m. name(q(1 D2,.free). Q)))))))
B =e(m,q(I D2, free))
M mess(q(I Dslave), N)

where A is the encrypted key to mess(q(ID,free),Q). The word output is

e(d(q(l D2, free),d( m, name(q(1D2, free), Q))), mess(q(ID, slave), N)).

Fortunately. the flaw uncovered is easy to correct. If the rule for encrypting messages had been
applied correctly, the second word input would have been e(m,q(TD, slave)). Moreover, both m and
q(ID,slave) are stored in processor q(ID,slave). Thus, we can alter the message encryption rule so
that the processor either checks that the second word input is the correct one or supplies the word
itself without requiring any input. Thus we can replace the penetrator's program encryption rule with

IF IP, MI C W THEN
W := W U e(d(q(ID, slave), d(m, N)), M).

However, recall that the original message encryption rule subsumed the key encryption rule as well.
This is no longer the case, and so we must supply the key encryption rule separately:
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IFIA,B31 C W THEN
W := W U Ie(m, e(d(m, B), d(q(ID, slave), e(d(m, B), d(q(ID, slave), d(m, A))))))I1.

These two rules satisfy all the requirements of a restriction of the original rule except that the
input words of the original rule do not form a subset of the input words of the new rules. We can get
around this by adding a "dummy word" to the input set of each new rule. Since this word is not
used in the formation of new words, this does not affect the rule, and so we do not need to reverify
the part of the protocol that was verified by using the original rule.

Now we want to use our revised specification to prove the theorem.

Theorem 5.11 - The word e(d(q(1 D2, free), don,name(q(1 D2, free), Q))), mess(q(I D, slave), N)) is
unobtainable.

Proof: Now we run the narrower by using the revised specification, on the word

e(d(q(1 D2, ,free),d(m, name(q(1D2, free), Q))), mess(q(I D, slave),. N)),

asking it to ignore cases that require prior knowledge of

d(Z, e(d (q(I D2, free),d (m, name(q(l D2. free), Q))), mess(q(l D, slave), N)))

or

d(q(l D2,.free),.d(m. name(q(l D2,.free), Q))),

and, after discarding cases that require prior knowledge of an odd word, we find that one of the
following three conditions must be satisfied:

(a) prior knowledge of
e(X~e(d(q( D2. .free), d(m. name(q(1 D2,.free), Q))),.mess(q (ID. slave),N)))
and X.

e(m,e(B.d(C~e(B.d(C~d(m.e(d(q(l D2, free)d(nl,nane(q(l D2, free)Q)).mess(q(ID slave), N)))))))) or;

(c) KEYSTATE(q(E. slave)) = d (X,d(m,e(d(q(l D2, free),d (mn.name(q(I D2. free), Q))),
mess(q(ID. slave), N)))) and IDSTATE(q(E~slave)) = IYAxI.

In the case of (c), we run the narrower on KEYSTATE(q(E,F))=

e(X,d(m,e(d(q(1 D2, free),d(m, name(q(l D2, free), Q))). mess(q(l Dslave), N))))

and IDSTATE(q(E,F)) =IY,XI, and find that prior knowledge of one of

(c I) e~m,e(B,d(C, e(B,d(C,d(m,e(d(q(A, free), d(m, name(q(I D2. free), Q))).
mess(q(I D, slave), N)))))))), or,

(c2) e(d(q(1D2, free),d(m, name(q(1D2, free),.Q))), mess(q(ID, slave), N))
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is required. This leads us to attempt to verify the unobtainability of all words with

e(d(q(1D2, free,d(m, name(q(1D2, free), Q))), mess(q(ID, slave), N))

on the right-hand side.

Lemmaw 5.1/2 - No word with e(d(q(1D2, free,d(m, name(q(1D2, free), Q))), mess(q(ID, slave), N))
on the right-hand side is obtainable.

Proof- We ran the narrower on X, where X is assumed to be a word with
e(d(q(1D2, free .d(m, name(q(1D2, free) ,Q))), mess(q(ID, slave), ,N)) on the right-hand side. Again, we
asked the narrower to ignore conditions that required prior knowledge of X or d(Z,X). All of the
necessary conditions turned up by the narrower fall into one of the following cases:

Prior knowledge of one of the following:

(a) e(m.e(S,d(R,e(S,d(R,d(m,X))))))

(b) e(m.e(S,d(R,e(S,d(R,C))))) where X= e(m,C)

Mc e(m~e(S,d(R~e(S.C)))) and e(m,R) where X =e(m,e(R,C))

(d) e(m~e(S,d(R,C))) where X = e(m,e(R~d(S,C)))

(e) e(m~e(S.C)) and e(m,R) where X = e(m,e(R,d(S,e(R,C)))

(f) e(mC) where X =e(m,e(R,d(S~e(R~d(SC))

(g) C where X = e(m~e(R~d(S,e(T,d(S,d(m,C))))))

(h) e(m,e(q(H,K),D)) and C where X =e(D.C)

(i) C and e(m,D) where X =e(d(q(l-, slave). D).C)

0j) C and D where X = e(d(q(H,slave),d(m,D))),C)

(k) e(DX) and D

(1) C and D where X =e(D,C)

(in) C and D where X =d(D,C)

In cases (a), (b), (d), (f), (g), (i), (j), (k), and (in), prior knowledge of a word with

e(d(q(1D2, free,d(m, name(q(I D2, free),Q))), mess(q(ID, slave),.N))

on the right-hand side is clearly required. In cases (c) and (e), it is not if

R =d(q(A,free),d(m,narne(q(1D2,free),Q))).
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In case (e). this means prior knowledge of e(m,e(S.mess(q(ID,slave),N))) is required; in case
(c), prior knowledge of

e(md(d(q(ID2, free),d(m,name(q(ID2, free),Q))),
e(S,d(d(d(q(ID2, free),d(m,name(q(D2, free),Q))),mess(q(ID,slave), N))))))

is required. In case (h), prior knowledge of a word with

e(d(q(1D2, freed(m,name(q(ID2, free),Q))), mess(q(ID,slave), N))

on the right-hand side is not required if

D = d(q(ID2,free),d(m,name(q(ID2,free),Q))),

but in this case prior knowledge of an odd word is required. Case (1) does not require previous
knowledge of a word with

e(d(q(ID2, free,d(m,name(q(ID2. free).Q))),mess(q(ID,slave), N))

on the right-hand side if

D = d(q(ID2.free),d(mn.name(q(ID2,free),Q))),

but in this case previous knowledge of

d(q(ID2. free),d(m,name(q(l D2. free) Q)))

is required. and this word is unobtainable.

Thus we have proved unobtainability of (c) and (e) when D is an instance of

d((q(ID2,free),d(m,name(q(ID2.free),Q))).

We rechecked the output of the narrower on cases (c) and (e). In all cases of (c) and (d) in
which D is an instance of d((q(ID2.free).d(m,name(q(ID2,free),Q))), prior knowledge of

e(m,D), that is, e(m.d(q(1D2,free).d(mname(q(1D2,free).Q))))

is also required. But this is an odd word, and we are done. [1

6. COMPARISON WITH OTHER WORK

The approaches taken in the formal verification and analysis of cryptographic protocols fall into
four main categories. The first of these is to attempt to model and verify the protocol using specifica-
tion languages and verification tools not specifically developed for the analysis of cryptographic proto-
cols. This, for example, is the approach taken in Refs. 8, 15, and 16.

Another approach is to develop expert systems that a protocol designer can use to try out vari-
ous scenarios. This is the approach followed by Millen 1171, Longley 118, 191, and to a limited
extent by Kemmerer 181. That this approach can be successfully used to detect previously
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undiscovered flaws in a protocol has been shown by Longley and Rigby [18]. However, these sys-
tems do not guarantee that the investigation of a protocol's security is complete; thus, although they
may be useful in identifying flaws, they cannot be used to provide greater assurance of a protocol's
security.

A third approach is to formally model the requirements of a protocol by using logics developed
for the analysis of logic and belief. This, for example, is the approach taken in Refs. 20 and 21.
This approach is, in a sense, complementary to the approach that we take, and we discuss it in more
detail in the next section of this report.

The fourth approach is to develop a formal model based on the algebraic term-rewriting proper-
ties of cryptographic systems. This is the approach followed by Dolev and Yao's public-key model
[101, upon which our model is based, and the model of Kasami, Yamamura, and Mori [221, also used
by Lu and Sundareshan in the verification of a hierarchical key management protocol [23].

Although our model is based on the Dolev-Yao model, it is more similar to the Kasami-
Yanamura-Mori model in that Dolev and Yao concentrate on protocols that can be completely
modeled as term-rewriting systems and for which efficient algorithms for deciding security problems
can be found. while we and Kasami et al. follow a more general approach. The main differences
between our approach and the Kasami-Yanamura-Mori approach is that we provide automated support
for the security analysis, and we allow a user to query the system about the attainability of internal
system states as well as the obtainability of secret words by a penetrator. This allows us to model
security goals such as authentication in a more natural way.

7. DISCUSSION

The fact that our techniques could be used to find security flaws in a previously published proto-
col shows that it is likely that they can be refined and developed into useful tools for protocol
analysis. Our experience in specifying and analyzing this protocol also points out ways for improve-
ment.

In our specification we modeled a protocol in which all systems operated correctly. Thus we
were able to show that no security violations occurred in a system in which no errors occurred.
However, the goal of most protocols is not only to ensure security if everything operates correctly,
but also to minimize the effects of system errors and security violations. If the protocol fails to do
so, it is considered to be inadequate. For example, the flaw in the Needham-Schroeder protocol [II
discovered by Denning and Sacco 13] required the existence of a previously compromised session key
to be exploited.

One of the flaws that our analysis uncovered was of this nature. However, since our analysis
was based on a specification of a correctly operating system, there may have been others that we did
not catch. One way in which we could catch such flaws would be to specify the incorrect as well as
the correct operation of a protocol. For example, we could include rules that describe a processor's
state variables taking on incorrect values or rules that describe a penetrator's compromising session
keys.

Other questions arose during the modeling of the protocol. One of these was: what actions
taken by the penetrator should we consider relevant to the security of a protocol? Clearly, the ability
of the penetrator to insert information into his own processors, to communicate with the other proto-
col participants, and to encrypt and decrypt on his own were relevant to the security of the protocol

31



C. A. MEADOWS

and were included in the specification, but we did not include the penetrator's ability to apply the suc-
cessor and predecessor operators. However, we had no formal basis for making these decisions.
Likewise, if we had also attempted to specify the incorrect operation of the protocol, we would have
had no good means of choosing which errors to consider as important.

One means of deciding what penetrator actions to include would be to examine previous, similar
protocols and see what actions penetrators used to exploit flaws in these. This was the reasoning
behind our decision to include the actions we did. We looked at the earlier protocol described in Ref.
5 and included the actions that the penetrator used to exploit its security flaw. However, it would
have been helpful if we had a more formal basis for excluding certain penetrator actions in the
analysis of the protocol. In particular, we would like to be able to prove general results that give
classes of protocols so that, if a protocol belongs to a certain class and is vulnerable to an attack
involving a certain penetrator action, then it is vulnerable to an attack not involving that action. This
is the kind of result proved by Even, Goldreich, and Shamir 1241. They define a class of public-key
protocols and show that if a protocol belonging to this class is vulnerable to an attack involving cer-
tain algebraic properties of the RSA, then it is vulnerable to an attack not involving these properties.
The result of Even et al. was obtained for a relatively narrowly defined class of protocols, and it is
unlikely that we would be able to prove similar theorems for more broadly defined classes. However,
we might be able to develop techniques for proving theorems about protocols that will allow us to
show that a particular penetrator action is irrelevant to the security of a given protocol.

Another question that arises is: how do we characterize the insecure states of a protocol'? The
techniques that we have outlined in this report give us no assistance in answering this question. Our
techniques allow us to specify the operation of a protocol, but they do not help us to determine its
requirements. To do so, we should turn to other methods. One of these is the methodology
presented by Burrows, Abadi, and Needham [201. In their system, a protocol is mapped to a set of
assertions in modal logic. The goal of the protocol is mapped to another such assertion. The set of
assertions is then analyzed by using formally defined inference rules to determine whether or not the
asserted goal of the protocol is derivable. If they are not, the assertions that the protocol should but
fails to provide are generated. Thus the security of a protocol is examined at a much higher level of
abstraction than our method of analysis provides.

The weakness of the approach of Burrows et al. is that the mapping of the protocol to the
assertions and the construction of the inference rules is informal. Thus, although the use of these
techniques in the analysis of the selective broadcast protocol would probably have uncovered the need
for the assertion that a participant in the protocol can only encrypt messages with his own key, it
would have provided no assistance in determining whether or not the protocol satisfied this assertion.
Our analysis showed that the protocol did not.

Thus some sort of layered approach seems to be required using techniques similar to those of
Burrows et al. to determine the requirements of a protocol and then using techniques similar to those
described in this report to determine whether or not a protocol can meet those requirements. This is
in line with current practice in system verification. No one verification technique exists that is
appropriate for all layers of abstraction. Instead, one uses different techniques to perform specifica-
tion and verification at different level of abstractions. The results of the verification at a given level
provide assertions to be proved at the next lower level of abstraction.

One more question remains to be answered. That is: how well will these techniques scale up?
Our techniques worked well on a relatively simple protocol that could be specified by using a small
number of protocol rules and a small number of rewrite rules. How can we make them work well on
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more complex protocols? This question can be answered in part by improving the mechanisms we
use in the protocol analysis, by improving the efficiency of the narrowing algorithm we use, by
extending the program so that it generates complete sets of equational unifiers for broader classes of
equational theories, and by extending the functionality of the program. For example, it would be use-
ful if our program included mechanisms for determining whether or not a word belonged to a formal
language input by the protocol analyzer. This would have eliminated a lot of the hand analysis we
had to do. But, we will also need to develop techniques for showing that the composition of already
verified pieces of a system satisfies its security requirements and techniques for limiting the reverifi-
cation that needs to be done when a system is modified.

8. CONCLUSIONS

In this report we have presented a formal model for a class of cryptographic protocols, a pro-
cedure for proving security properties of protocols specified according to this model, and a program
that provides automated assistance in these proofs. We specified a published protocol and attempted
to prove it secure by using our techniques. The fact that these techniques exposed two flaws in the
protocol provides evidence that these techniques can provide significant assistance in the analysis of
protocols.
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